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The perfectly matched layer (PML) recently formulated by Berenger for the ab-
sorption of radiated/scattered waves in computational electromagnetics is adapted
to computational acoustics, and its effectiveness as a nonreflecting boundary is ex-
amined. The excellent absorbing ability of the PML is demonstrated by its small
reflection coefficient for a plane wave incident on a plane interface. However, ad-
ditional frequency-domain and time-domain solutions show that the PML may not
be an appropriate computational boundary if the analyst is only interested in the
response of the radiator/scatterer and/or the acoustic field in the vicinity of the radi-
ator/scatterer. © 1998 Academic Press

1. INTRODUCTION

In 1994, Berenger [1] presented, for the finite-difference, time-domain solution ¢
Maxwell's equations in two dimensions, a new absorbing boundary, which he called
perfectly matched layer (PML). His demonstration that the PML possesses extraordin:
energy-absorbing properties was verified by Kettal. [2], who also extended the formu-
lation to three dimensions. Recently, Hu [3] formulated a PML for the linearized Eule
equations in two dimensions; similar energy-absorbing effectiveness was demonstratec

APML is described by governing equations produced through the introduction of artifici:
attenuation into the governing equations for the enclosed medium. Thus, the domain of
PML may be discretized in the same manner as that employed to discretize the enclo
medium.

Here, the PML is examined for computational acoustics. First, the full 3D acousti
formulationis constructed. Next, the reflection of plane waves at the unbounded flatinterfe
between a semi-infinite acoustic domain and a semi-infinite acoustic PML is investigat
in the frequency domain; similar reflection is examined when the PML has finite thicknes
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Then, the effectiveness of the acoustic PML for a bounded interface is investigated
comparing PML and exact impedance curves for the dilatational motion of a spheric
surface. Finally, performance of the PML in time-domain calculations is examined fc
normal impingement of a plane wave and for absorption of circular waves at the boundar
of circular and rectangular domains.

2. ACOUSTIC PML

Because of the isomorphism between acoustic and electromagnetic wave propagation
the adaptation of Berenger's electromagnetics formulation to acoustics is straightforwa
With fluid velocity u normalized to the speed of soungfluid pressurep to pc? (where
p is the mass density), and timeo | /c (wherel is a characteristic length measure), the
nondimensional pressure—velocity equations of acoustics are

9 ap
— = — _— = — V . .
T vp, ot (V-u 1)

Following Berenger [1], we expand pressurgpas px + Py + P, and introduce the atten-
uation parameters, dy, 0, to write the PML pressure—velocity equations in a Cartesian
reference frame as

dUy Yo, = 0 (Pe+ Dy + Do) dPx n . JdUy
gt Tt = T (Pt By R T G = Tt
dUy el opy duy
_— = —— —_— = —— 2
ot + QyUy 8y(px + Py + P2, Py + Qy Py By’ (2)
ouz YU, = 0 (Pe+ By + Do) ap; n . duy
at QZ z — 97 px py pZ ’ ot quZ - 9z .

Note that, whileuy, uy, andu, are the physical components of velocipg, py, Pz, 0x,
gy, andg, have no physical meaning. Also, whep= gy =0, =0, the three equations in
the left column of (2) reduce to the first of (1) and the sum of the three equations in the rig
column reduce to the second of (1). Finally, in contrast to the case of three-dimensiol
electromagnetic waves, where 12 equations are required to describe the PML [2], only
equations are needed here for 3D acoustic waves; this, of course, is because pressure
scalar field.

3. FREQUENCY-DOMAIN ANALYSIS OF PLANE-WAVE REFLECTION

It is easily verified that the solutions to (2) for time-harmonic plane waves are of th
form

YV =vyoexplio(y-r—tlexp[—(q- ], (3

wherer =ix+jy+kz is the position vectory =iy, +jyy + Ky, is the vector of direc-
tion cosines, and the attenuation vectog s idxyx +jayyy + Kad.y,. The corresponding
solution from in an acoustic medium is, of course, (3) vgta 0.
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FIG. 1. Plane-wave reflection and transmission.

Let us examine an illuminating two-dimensional problem (Fig. 1). Witk-dependency,
Egs. (2) simplify to

dUy t o, = d (Pe -+ Dy) aPx n _ JdUyx
gt = T (Pt By), ot T Px=Ton @

d
W‘*‘Qyuy:—@(px‘i'py), W‘*‘Qypy:—a—y-
Furthermore, with1 (X, ¥) = v¥inc(X, ¥) + Yren(X, Y) as the generic solution on the leftand
Ya(X, Y) = Yrans(X, ¥) as that on the right, phase matching of the solutions () at0
yields (Appendix A)

<1+ |_le> Sing; = (1+ '—qyz) Sing. %)
w w

In addition, with the pressure and velocity fields in each half-space expressed as (
continuity of pressure and normal velocityxat O produces the reflection coefficient (Ap-
pendix A)

_ COS¢1 — COSe
"~ COSpy + COSpy

For ayo =ay1, (5) yields ¢, = ¢, and then (6) yieldRy(w) =0. Thus, if Medium 1 is
acoustic and Medium 2 is an acoustic PMly, =0 yields perfect phase matching and
complete energy absorption at the interface for any valugs of, andgy.; thisis impressive
performance.

For a semi-infinite acoustic medium (Medium 1) in contact with a PML of finite thicknes:
(Medium 2),0x1 = gy1 =0 and Medium 2 extends only over the domaig & < §. Then,
for gy2 = dy1 =0, Egs. (4) become for Medium 2

Ro(w) (6)

Uy 0 aPx _duk

ot + OxUx = 8X(px+py), ot + 0OxPx = ax -
My Do By
at aypx P e = ay

Itis readily found that the reflection coefficient at the interfaee0 is given for this problem
by (Appendix A)

Ro(w) = Rs exp [-2(ax — )3 cosg], ®)
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whereR;s is the reflection coefficientat=1; R; = 1 (R; = —1) corresponds to a fixed (free)
boundary ak = §. This relation shows that, for waves withr /2 < ¢1 < 7/2, Ry(w) may

be made as small as desired by choosjptjas large as required. Thus, one can achieve
a desired level of attenuation with either a thin, highly attenuating layer or a thick, mildl
attenuating layer. Given the goal of minimizing computational cost, the former option i
generally to be preferred.

Unfortunately, a jump in attenuation across the medium interface may lead to spt
ious reflections in discrete models [1]. Hence, it is useful to employ a variable attenuatic
that increases steadily from zero as one moves away from the interface out through
layer. In this case, the problem of the previous paragraph becomes one of wave propz
tion in an inhomogeneous medium for which the reflection coefficient may be determine
from the solution of a Riccati equation [5]. If the variable attenuation in (7) is taken a
Ox(X) = gsx", the Riccati equation reduces to a linear ordinary differential equation the
yields [1]

_ B Qs
Ro(w) = RseXp[ 2<n~|—

1 ia)> ) cos¢1} ) 9

Thus, absorption performance remains high in PML's with variable attenuation if
20568 cosgy/(n + 1) is made large.

Results for the special case of normal incidence may be obtained from (8) and (
by merely takingp; = 0. For this situation, it is useful to examine the specific acoustic
impedanceg(w) = p(0, Y, ®)/ux(0, y, w) of Medium 2. In all three cases abog(w) is
given by

14 Ro(@)
T 1-R

Thus, for |Ry(w)| < 1, Zo(w) &1, which means that the dimensional specific acoustic
impedance is simplyc.

Zo(w) (10)

4. FREQUENCY-DOMAIN ANALYSIS OF SPHERICAL-WAVE REFLECTION

The preceding analyses for an unbounded plane interface are not representative of ac
computational configurations. Perhaps the simplest representation of a bounded-interf
problem pertains to the radially symmetric radiation of acoustic waves by a spherical s
face undergoing dilatational motion (Fig. 2). Here, the domain inside the surface at
represents the radiator, and the acoustic and perfectly matched layers represent the
bounded acoustic fluid surrounding the radiator. The fidelity with which the two layer
represent the unbounded fluid is readily assessed by comparing approximate and e:
specific-acoustic-impedance curves [6] looking out from the spherical surfack.

For the PML of Fig. 2, the radially symmetric pressure—velocity equations (which pertai
to angle-invariant fields) are

auy _op ap
at at

ar

19 ,
U =——~, qp=— 55 (F7un). (11)
For simplicity, we takeg as constant; iff = 0, (11) pertains to an acoustic medium, as it

must. A straightforward wave-propagation analysis yields for the reflection coefficient :
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acoustic medium

FIG. 2. Acoustic and PML layers on a spherical surface.

r =1 (Appendix A),

_a-2q-io)(l+ho—iq(l-a) ,
Ru@) = - 2(q—iw)1+hw—iql—a) exp(i 2eh), (12)

where, for a pressure-release surfaceatl + h + §,
a=exp[-25(q —iw)], (13)
and for a rigid surface at= 1+ h + §,

oy (1+h+d8)(q—iw)+1
T AthtoQ-iw) -1

exp[-25(q — iw)]. (14)

For small reflection from the outer PML bounddsy < 1), ()2 > 1;then (12) reduces
to

Ri(w) = —[1 4 201+ h)(i + w/q)] L expi2wh), (15)

which is small only for 2(1 4+ h) > 1 and/or 2?(1 + h)/q > 1. For frequencies above
a specified lower bound, the former is accomplished with a sufficiently large acoustic lay
thickness and the latter is accomplished with a very large PML thickness and/or a sm
attenuation coefficient. A® — 0, however|R;(w)| — 1 and the PML fails.

Greater insight is gained by examining the specific acoustic impedance looking out frc
the surface of the radiator, i.e.,rat= 1. It is readily shown that this impedance is given

by
2@ = 1) — o) = [ L R@ 1) (16)
1(w) = n(w op(w) = 1+ R o )
wheren (o) = Re{z1(w)} is the specific acoustic resistance an@) = —w~tIm{z;(w)} is
the specific acoustic inertia. For the infinite acoustic medium, these quantities are giv
by n(w) =w?/(1 + ©?) and u(w)=1/(1 + »?) [6] so that (16) yields, as expected,
Ri(w) = 0. We observe that(w) approaches zero as — 0 and unity asw — oo
and thatu(w) approaches zero as— oo and unity ase — 0.



PERFECTLY MATCHED LAYER 171

1.0 h=0

h=30 & exact

Y

0.8+
nw 0.6}
0.4}

0.2}

0.0 . . .
0.1 1.0 10
[a}

FIG. 3. Specific acoustic resistance curves for the dilatational motion of a spherical suffaces).

Specific acoustic resistance and inertia curves produced by (16) and (12) are compa
with their exact counterparts in Figs. 3 and 4 é@r=6 andh=0, 1, 5, 30. We see that
agreementis poor fér= 0 and 1, marginal fdn = 5, and satisfactory fdr = 30. The curves
for h= 30 oscillate with small amplitude about the corresponding exact curves, which a
smooth. These results suggest that, although the PML is an excellent absorbing bounc
for plane-wave reflection at a plane boundary, it might be a poor impedance boundary
more general geometries. A similar analysis has been carried out for radially symmet
circular-wave reflection from a circular interface, with similar results. Hence, in both case
the PML requires the use of a thick acoustic layer to produce accurate impedance cur
for an unbounded acoustic domain.

5. TIME-DOMAIN ANALYSIS OF NORMAL PLANE-WAVE REFLECTION

Let us now consider normal incidence of a transient plane wave on an infinite plar
surface atx =0 that separates a semi-infinite acoustic medium and a PML of thicknes
§ with a constant attenuation parameterBy direct substitution in the first of (4) with
0x = 0 in the acoustic medium argg = q in the PML, it is readily shown that the pressure

1.0
0.8¢

H 0.6

0.4}

.l \\ A
h=0 ,

0.0
0.1 1.0 10

®

FIG. 4. Specific acoustic inertia curves for the dilatational motion of a spherical sudace 6).
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and velocity fields have the forms

Pa(X,t) = f(X —t) +g(x + 1), X <0,
Ua(X, 1) = F(X —t) —g(x + 1), X <0,
px,t) =e *F(x —t) + e*G(x+t), x>0,
ux,t) = e *F(x —t) —e¥*G(x +t), x>0.

(17)

Enforcement of pressure and velocity continuitxat 0 and specification of a rigid or free
boundary ak = § yield

F(o)= @), 9@ =G©), GE)==+e2Pf25-7), (18)

where the plus (minus) pertains to a rigid (free) boundary. Thus, the pressure and veloc
fields for this problem are given by

Pa(X,t) = f(X —t) e 2P (25 —x —1), x <0,
Ua(X, 1) = F(X—t) Fe 2P (25 —x — 1), X <0,
pX,t) =e Xf(x—t) e 9@ 0f2s—x—t), x>0,
ux,t)y=e*f(x—t) Fe9@0f25 —x—t), x=>0.

(19)

These results are expected from the frequency-domain analysis of Section 3.
Equations (19) show that PML performance in the continuous system considered depe
upon the value of the products, irrespective of the individual values of and §. To
demonstrate that is not true for the corresponding discretized system, we consider fin
difference calculations for a variable attenuaiipa q(x) = gs(x/8)? and a windowed-sine
pressure loading at= —1 given byp(t) =d(t) sin 27 ft, whered(t)=1forO< t < 1and
d(t) =0 otherwise; the frequency paramefeassumes the values 1, 5, and 10. A staggerec
differencing scheme is used that constitutes a reduced version of the scheme describe
Appendix B. Computed velocity histories»at= —1 are presented in Fig. 5 fgs =50 and
3 =0.1. The figure shows that significant reflection occurs for all three carrier frequencie
note that the reflection fof = 10 is actually larger than that fdr=>5. If g5 is reduced to
5 ands increased to 1, thereby maintainiggh = 5, the same calculation exhibits visually
complete absorption. We usédk = 0.01 andAt = 0.005 in the computations for Fig. 5 to
ensure numerical stability and good resolution.

6. ABSORPTION OF A SOURCE-GENERATED TRANSIENT WAVE
IN TWO DIMENSIONS

In order to verify our implementation of the PML technique, we performed an acousti
version of Berenger’s 1994 calculation [1]. Two separate computations were carried out |
ing the finite-difference scheme outlined in Appendix B. One pertained to a«18®-cell
rectangular domain enclosed by a PML on all sides, and the other, a reference solution, |
tained to a 38& 380-cell square domain. A pulse excitation was applied at the geometric
center of both domains. After nondimensionlization of Berenger’s electromagnetic-wa
formulation on the basis of the speed of light{3.0° m/s) and the horizontal length of the
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FIG. 5. \elocity histories at the point of application of a windowed-sine pressure loading for three differen
frequenciesf = 1, 5, 10 (plane wavesy; = 50 ands = 0.1).

100-cell side (1.5 m), the pulse in dimensionless form is given by

p(ny, ny) = (10— 15cos 1@t + 6 cos 2Grt — cos30rt)/320 fort < 0.2, 20)
20
p(ny,ny) =0 fort > 0.2.

A plot of this pulse displays a characteristic periodTef~ 0.2 and thus a characteris-
tic frequency off;~5. The loading pointsrg, ny) are (50, 25) and (190, 190) for the
two computations. The dimensionless spatial and temporal increments are 0.01 and 0.(
which correspond to Berenger’s spatial and temporal increments of 1.5 cm and 25 ps, r
pectively. Free-boundary solutions, corresponding to acoustic pressure-release bounda
were obtained.

Two curves are presented in Fig. 6 for the relative error along the lower interface of tt
acoustic and PML domains ait= 2.5; this error is defined as

R() =[p(,1) — pr (i, DI/pr (50, Dmax. (21)

wherep(i, 1) is the pressure snapshot obtained with the 2@D-cell domain enclosed by
the PML andp; (i, 1) is the corresponding reference snapshot obtained with the 380-

cell domain. The first curve (a) is obtained with a PML of linear spatial variatjor), =
0s(z/8), wherezis a local thickness coordinate afits the thickness of the PML; the other
curve (b) is obtained with a PML of parabolic spatial variatepa) = gs(z/8)?, which is

the same PML used in our earlier calculations. In both cases, 10 PML cells correspondi
to gs =50 andé = 0.1 are employed to enclose the 1060-cell computational domain.
Note that the linear PML performs slightly better than the parabolic PML for this pulse
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FIG. 6. Absorption of a pulse excitation by the PML technique shown as percentage relativeRéryor
(t=25,0; =50,6 =0.1andq(2) = gs(z/8)") (&)n = 1; (b)n = 2.

excitation. However, both solutions demonstrate that the PML is very effective in this cas
The solution obtained here falls within the accuracy range achieved by Berenger with bc
linear and parabolic PMLs (Figs. 9-11 in [1]).

7. TIME-DOMAIN ANALYSIS OF CIRCULAR-WAVE REFLECTION

To examine further PML performance in computational acoustics, time-domain finite
difference computations for a two-dimensional, radially symmetric geometry are performe
Here, we discretize the following governing equations in the PML betweeri 4+ h and
r = 14 h+ § for the two-dimensional configuration of Fig. 2:

du __9p 9p __ 19
T +qru= Fralen +qr)p= Y (ruy, (22)
where
q(r) = gs[r — (14 h)]?/82 (23)

Corresponding governing equations for the acoustic medium betweed andr = 1+h
are obtained by taking(r) = 0. A radially symmetric version of the finite-difference
scheme described in Appendix B is used.
In the computations that produced Figs. 7, 8, and\®, = 0.01, At = 0.005 and
Om = 50. Again, a windowed-sine pressure loading is the excitation. Significant reflectior
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FIG.7. Velocity histories at = 1 for awindowed-sine radially symmetric pressure loading for three different
frequenciesf =1, 5, 10 (circular waves}; = 50,h = 1, ands = 0.1).
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FIG. 8. Velocity histories at = 1 for awindowed-sine radially symmetric pressure loading for three different
frequenciesf = 1, 5, 10 (circular wavesg; = 50,h = 1, ands = 2).
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0.5 |3

u(l,t) o

FIG.9. Velocity histories at = 1 for awindowed-sine radially symmetric pressure loading for three different
frequenciesf = 1, 5, 10 (circular wavesg; = 50,h = 5, ands = 0.1).

are observed from the acoustic/PML interface in Figs. 7 and 8. It is interesting to no
that merely increasing the thickness of the PML does not achieve high absorption of
low-frequency incident wavéef = 1) as it does for a plane incident wave. Thus, a PML
surrounding a relatively thin acoustic lay@r ~ 1) cannot accurately represent the infinite
domain at low frequencies. Much improved velocity histories are obtainedhwttb, as
shown in Fig. 9, which agrees with the frequency-based behavior seen in Figs. 3 and 4.

Most time-domain calculations use a rectangular domain rather than a circular one. Th
we now consider circular waves that impinge on a square boundary (Fig. 10). Because
symmetry, only a quarter of the domain need be considered. A two-dimensional stagge
scheme [7, 1] is used, the details of which are given in Appendix B. For windowed-sir
pressure loadings generated at 1, velocity histories om = 1 at three different angular
locationsg = 0°, 22.5°, and 45, are shown in Figs. 11, 12, and 13 for= 1, 5, and 10,
respectively. In these calculations, we usgd) = 50(z/8)% andh = 4, where the PML
thicknesss is 0.1 andz is a local thickness coordinate. Note that 4 approximately cor-
responds to the same area of acoustic medium characterizing the case of circular symm
with h = 5. Before reflection takes place, differences in velocity histories for the thre
different angles are seen to be very small, which validates the use of a stepped boundat
represent the quarter circle. From the results, it is seen that the amplitude of the reflec
signal decreases with increasing carrier frequency. However, the amplitude of the reflec
signal for a given carrier frequency is larger than that of its counterpart in the case of rad
symmetry.

Now the results shown in Figs. 7-9 and 11-13 are not directly comparable to tho
appearingin Fig. 6, inasmuch as the former pertain to the normal-velocity field on aradiato
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FIG. 10. Computational domain for two-dimensional finite-difference computations with a PML
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FIG. 11. Velocity histories om = 1 atd = 0°, 225°, and 45 for a windowed-sine pressure loading (square

boundaryh = 4,q; = 50,8 = 0.5, andf = 1).
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FIG. 12. Velocity histories omr = 1 atd = 0°, 225°, and 45 for a windowed-sine pressure loading (square
boundaryh = 4,q; = 50,8 = 0.5, andf =5).
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t
FIG. 13. \elocity histories omr = 1 atd = 0°, 22.5, and 45 for a windowed-sine pressure loading (square
boundaryh = 4,q; = 50,5 = 0.5, andf = 10).
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surface and the latter pertain to the pressure field at an acoustic-PML interface. Howe\
the results in Fig. 6 indicate high absorption of the radiated wave, whereas those in Figs.
and 11-13indicate low absorption. The discrepancy is due to the vast difference between
ratios of the acoustic-layer’'s characteristic thickness to the radiator’'s characteristic radi
In the problem associated with Fig. 6, the radiator’s characteristic radius is roughly one-h
of a cell width and the acoustic-layer’s characteristic thickness is 25 to 50 cell widths,
that the thickness to radius ratio lies between 50 and 100. In the problem associated v
Figs. 7-9 and 11-13, the corresponding ratios range from 1 to 6. Thus, as demonstrate
Figs. 3 and 4, increasing the thickness of the acoustic layer until it is much larger than t
characteristic radius of the radiator greatly improves PML performance.

8. CONCLUSION

The performance of the perfectly matched layer (PML), first formulated by Berenger fc
the time-domain, finite-difference solution of Maxwell’'s equations, has been evaluated f
computational acoustics. It is shown that, while the PML constitutes an excellent absorbi
boundary for plane waves incident upon a planar interface, its performance in nonplar
geometries is not always satisfactory.

A PML is surely effective in nonplanar geometries whggs)? > 1 (wheres ~ 1) and
h > 1. It can also be effective with smallleiin the case of short acoustic wavelengths, i.e.,
for f > 1 (Figs. 3, 4, 8, and 13); in this circumstangex 1 sometimes works satisfactorily
(Fig. 7), although a large¥ is better (Fig. 8).

The PML cannot work well in nonplanar geometries for<h1 and f < 1 because the
radiated/scattered near field at intermediate and low frequencies is not purely radiative
Figs. 3 and 4, the specific acoustic impedance presented by the PML=£d0 is purely
resistive, whereas the impedance for the infinite acoustic domain is both resistive and iner
over the range Q0 < w < 10; for » < 0.1 the impedance is almost purely inertial. The
combination of a PML-encased acoustic layer wite- 1 produces a more representative
impedance, but an acoustic layer with- 5 is required to achieve an accurate impedance
over the range 0.% w < 10.

The requirement of a thick acoustic layér>> 1) is not a computational burden if one
is interested in the acoustic field over a large region surrounding the radiator/scattel
However, this is often not the case. When one is interested only in the response of 1
radiator/scatterer, one would like to use- 0 for maximum computational efficiency. Even
if one is interested in far-field radiation/scattering, it is often more computationally efficier
first to determine the radiated/scattered acoustic field on the surface of the radiator/scatt
and then to calculate far-field results from the solution at that surface.

APPENDIX A: REFLECTION COEFFICIENTS

To derive (5), we write from (3)
Yine(X, Y, 1) = Yo €Xpliw (COSP1X + SiNg1y — t) — Ox1 COSP1X — Qy1 SiN1Y],

Vre(X, ¥, 1) = Yo €XPliw (—COSPH1X + SiNg1y — t) + Ox1 COSP1X — Qg Sing1y],  (Al)
Virans(X, ¥, 1) = Yo €XPliw (COSPoX 4 SiNghoy — t) — Oy2 COSP2X — Qy2 SiNgy],
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so that

Ipinc(oa Y, t) = Ipio exDq)lv wrefI(O, Y, t) = Wro eXpCDL
1ptrans(ov Y, )= I/fto equDZ,

(A2)

wheredy = iw(singky —t) — gy singyy. Settingd; = ®,, we obtain (5).

To derive (6), we write from (A2) witlb, = @1, pinc(0, Y, t) = pio eXP(D1), Prer(0, Y, t)
= Po €XP(P1), and Puans(0, Y, t) = po€Xp(P1). Thus, Pinc(0, Y, t) + Pren(0, y, t) =
Ptrans(0, Y, 1) yields pio + pro = pro- Also, we find from (A1)

3
5[px1(x, Y, t) + pyi(X, y, )]

0

9
= &[pl(x, y,. 0] = &[pinc()(, Y, 1) + pren(X, Yy, D]

= (iw — Ox1) COSP1 Pio €XP | @ (COSP1X + SiNg1y — t) — Ox1 COSP1X — Cy1 COSP1Y]

+ (—i® + Ox1) COSP1 Pro €XP [l (—COSP1X + Singry — 1)

+ Ox1 COSp1X — Cy1 COSP1Y],
(A3)
3
8_X[pX2(X’ Y, 1) + pya(X, y, t)]

0

ad
= a_x[pZ(Xs Y, t)] = a_x[ptrans(xv Y, t)]

= (i — Ox2) COSP2 Pro €XP [l  (COSP2X + SiNg2y — t) — Ox2 COSP2X — Cy2 COSP2Y],
so that these, (5), and the first of (4) give
Ux1(0, Y, 1) = (Pio — Pro) COSp1 €XP(P1),  Ux2(0, Yy, t) = pro COSpr exp(Py1).  (A4)

Thus,ux1(0, y,t) = ux2(0, y, t) yields (pioc — Pro)COSP; = Pro COSP2. This result, along
with pioc + Pro = Pto aNdR = pro/ Pio, produces (6).

For the problem of an acoustic medium (Medium 1) occupying the domain< x < 0
that is in contact with an acoustic PML (Medium 2) occupying the domamn)X0< §, we
write for —oo < x <0

Pinc(X, ¥, 1) = Pio €Xpliw (COSP1X + Sing1y — )],

_ (A5)

Prefi(X, Y, 1) = Pro1 €Xpllw(—COS$1X + Singry — 1],

and for 0< x < § [with gy2 = gy1 = 0, which yieldsp, = ¢, from (5)]
Prans(X, ¥, 1) = Pro €Xpliw (COSP1X + SiNg1y — t) — Ok COSPH1X], (A6)

Prefi2(X, Y, 1) = Pro2 €XPli @ (—COSPH1X + Sing1y — t) + Oy COSp1X].
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These equations plus the first of (7) then yield

Pinc(0, ¥, ) = Pio €XP(P), Prefin (0, Y, 1) = Pro1 €XP(P),
Prrans(0, Y, 1) = Pro €XP(P), Prefiz(0, Y, t) = Proz EXP(P),

Ux1(0, Y, t) = (Pio — Pro1) COSg1 EXP(P),

Ux2(0, ¥, 1) = (Pro — Pro2) COS¢1 €XP(P),

(A7)

where® = iw(sing,y —t).

Continuity of pressure and normal velocityat 0 then produces from (Ao + Pro1 =
Pto + Pro2 and Pio — Pro1 = Pro — Pro2,» Which may be added and subtracted to obfain=
Pio and pro2 = Proz. The boundary condition at =8 may be writtenprem(s, y,t) =
Rs prans(8, Y, ), where Ry =1 for a fixed boundary andR; = —1 for a free boundary.
But, from (A6), Prans(3, ¥, ) = pro €Xpl(iw — Ox) & cosp1 + @] and prez(8, Y, t) = Pro2
exp[(—iw + gx) § cospy + P]; thus, pro2 = Rs exp [2(i w — 0x) 8 COSp1] pro- Finally, the in-
troduction ofpry2 = pro1 @andp = Pio iNto this result yields (8) for the reflection coefficient
Ro(®w) = Pro1/ Pio-

Regarding (12), we proceed as follows. By direct substitution in (11) (@vi¢hO for the
acoustic medium), it is readily shown that the time-harmonic pressure and velocity fiel
have the form

Pa(r,t) = Ar—1d® -t 4 Br-lg-ie+), l<r<1+h,

Ua(r,t) = (L+i/wr)Ar—tget-b

—(L—i/wr)Br-lg-ier+b, 1<r<1+h,
‘ . (A8)
p(r,t) = Cr-lgdrget-b L pr-lgdrg=@+ 14 h<r <14h+35,
u(r,t) =[1+1/(q—iwy]Crledrder—b
—[1-1/(q —iw)yr]Dr e @+ 14t h<r <14+h+35.
Enforcement of pressure and velocity continuity at 1 + h yields
Ade+h) 4 Berio@+h) — Cega@thgaol+h) 4 pdd+h g-iod+h)
[1+i/o@+h]A°MD _[1 —i/w(l+ h)|Be @@ (A9)

=[1+1/(g-iw)(d+ h)]Ce—Q(l+h)eiw(l+h)
—[1-1/(g—-iw)(1+h)] Ded(+h) g-io@+h)

and the boundary conditionat=1+ h + § givesD = «C, whereu is given by (13) for a
pressure-release boundary and by (14) for a rigid boundary. Simultaneous solution of t
last equation and (A9) yields (12) for the reflection coefficiBntw) = B/A.

APPENDIX B: STAGGERED FINITE-DIFFERENCING SCHEME

Consistent with Berenger's approach, a staggered finite difference scheme (Yee’s al
rithm) is used here [7]. A typical cell is shown in Fig. B1. Note that pressure is computed
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(1)) Vitl/2,
o X

FIG. B1. Computation cell.

the center of the computational cell, while velocities are computed at the midpoints alo
the edge of the cell. Fakx = Ay, we have for the acoustic domain

N2 n-12 At o
Piv1/2.j+12 = Pit1y2jr12 — Ax (uin+1,j+l/2 — Ui jt172 + Whaypje1 — Vin+1/2,j)
n4l _ on—1 At ¢ ny1p2 n+1/2 (B1)
Uij+re = Uijr2 = Ay I +1/2,j+1/2 ~ pi71/2,1+1/2]
At
41 -1 n+1/2 n+1/2
vi2 ) = Vitijeg — Ax [pi+1/2,j+1/2 - pi+1/2,j71/2]‘
In the PML, p = pyx + py, we split the equations accordingly. Therefore,
— Uxi At
pn_+1/2 . = pn_fl/2 ) @ Oxit12At _ ﬂ T —ul. ]
xi+1/2,j+1/2 xi+1/2,j+1/2 CIxi+1/2AX i+1,j+1/2 i,j+1/2
—Qyi At
pn_+11/22 s pn_—11/22 - 2e—qyi+l/2At _ (1 — e Wyi+12 ) PR, ]
yi+1/2,j+1/2 = Pyit1/2.j+1/ Tyaahx ) ViHzia T Mg
1 — @ i+1/2At
n+1  _ n .
Uiljr12 = Ui 1172 (7%“/2&( (B2)

n+1/2 n+1/2 n+1/2 n+1/2
X [pxi+l/2,j+l/2 + Pyifi1/2 412 = Pxi—1/2,j4+1/2 — pyi—l/2,j+l/2]'
1— e(Iyi+1/2At>

l)n-&-l _ vn _ (
i+1/2,j — Yi+1/2,j
/2] /2] Qyj+1/2AX

n+1/2 n+1/2 n+1/2 n+1/2
X [pxi+1/2,j+1/2 + Pyifi/2 112 = Pxivi/2,j-12 — pyi+l/2,jfl/2]'

The truncation error of the above finite-difference schen@j ig\t)?, (Ax)?]. Care needs to
be taken when dealing with nodes at the acoustic/PML interface; i.e., (B2) must be modifi
to allow transition from two pressure components in the PML to one in the acoustic doma
[1]. For nodes at the acoustic PML interface denoted\bythe first two of (B2) are still
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applicable, but the third and fourth become

1-— e*QxNﬂ/zAt
n+1 N n+1/2 n+1/2 n+1/2
UNj12=UN,j+1/2 — Generzdx ) P1zi42 + Pyniiszj+1/2 — Pen-a/2j+1/2)
(B3)
Ml on (1 28t n+1/2 4 phy2 _n+1)2 ]
Vit12,N =Vit12,N 7qu+l/2Ax Pxir1/2.N+1/2 T Pyir1/2,N+1/2 = Pxit12N-1/2]
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